Metal-ion-dependent folding of a uranyl-specific DNAzyme: insight into function from fluorescence resonance energy transfer studies.

نویسندگان

  • Ying He
  • Yi Lu
چکیده

Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO(2)(2+))-specific 39E DNAzyme in the presence of Mg(2+), Zn(2+), Pb(2+), or UO(2)(2+). At pH 5.5 and physiological ionic strength (100 mM Na(+)), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg(2+) or Zn(2+). However, no folding occurred in the presence of Pb(2+) or UO(2)(2+); this is analogous to the "lock-and-key" catalysis mode first observed in the Pb(2+)-specific 8-17 DNAzyme. However, Mg(2+) and Zn(2+) exert different effects on the 8-17 and 39E DNAzymes. Whereas Mg(2+) or Zn(2+)-dependent folding promoted 8-17 DNAzyme activity, the 39E DNAzyme folding induced by Mg(2+) or Zn(2+) inhibited UO(2)(2+)-specific activity. Group IIA series of metal ions (Mg(2+), Ca(2+), Sr(2+)) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr(2+) (1.12 Å) is comparable to that of Pb(2+) (1.20 Å), but contrary to Pb(2+), Sr(2+) induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb(2+) and UO(2)(2+). Under low ionic strength (30 mM Na(+)), all four metal ions (Mg(2+), Zn(2+), Pb(2+), and UO(2)(2+)), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA-backbone phosphates in addition to playing specific catalytic roles. Mg(2+) at low (<2 mM) concentration promoted UO(2)(2+)-specific activity, whereas Mg(2+) at high (>2 mM) concentration inhibited the UO(2)(2+)-specific activity. Therefore, the lock-and-key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock-and-key mode only at ionic strengths of 100 mM or greater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DNAzyme-gold nanoparticle probe for uranyl ion in living cells.

DNAzymes have shown great promise as a general platform for detecting metal ions, as many metal-specific DNAzymes can be obtained using in vitro selection. While DNAzyme-based metal sensors have found many applications in the extracellular environment, no intracellular application of DNAzyme sensors has yet been reported. Here, we demonstrate a novel type of metal ion sensor for intracellular m...

متن کامل

Metal ion as both a cofactor and a probe of metal-binding sites in a uranyl-specific DNAzyme: a uranyl photocleavage study

DNAzymes are known to bind metal ions specifically to carry out catalytic functions. Despite many studies since DNAzymes were discovered nearly two decades ago, the metal-binding sites in DNAzymes are not fully understood. Herein, we adopt uranyl photocleavage to probe specific uranyl-binding sites in the 39E DNAzyme with catalytically relevant concentrations of uranyl. The results indicate tha...

متن کامل

Use of a novel Förster resonance energy transfer method to identify locations of site-bound metal ions in the U2–U6 snRNA complex

U2 and U6 snRNAs pair to form a phylogenetically conserved complex at the catalytic core of the spliceosome. Interactions with divalent metal ions, particularly Mg(II), at specific sites are essential for its folding and catalytic activity. We used a novel Förster resonance energy transfer (FRET) method between site-bound luminescent lanthanide ions and a covalently attached fluorescent dye, co...

متن کامل

Metal ion binding and the folding of the hairpin ribozyme.

The hairpin ribozyme comprises two formally unpaired loops carried on two arms of a four-way helical RNA junction. Addition of divalent metal ions brings about a conformational transition into an antiparallel structure in which there is an intimate association between the loops to generate the active form of the ribozyme. In this study, we have used fluorescence resonance energy transfer to ana...

متن کامل

Solution probing of metal ion binding by helix 27 from Escherichia coli 16S rRNA.

Helix (H)27 from Escherichia coli 16S ribosomal (r)RNA is centrally located within the small (30S) ribosomal subunit, immediately adjacent to the decoding center. Bacterial 30S subunit crystal structures depicting Mg(2+) binding sites resolve two magnesium ions within the vicinity of H27: one in the major groove of the G886-U911 wobble pair, and one within the GCAA tetraloop. Binding of such me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 17 49  شماره 

صفحات  -

تاریخ انتشار 2011